A Pose-Invariant Descriptor for Human Detection and Segmentation
نویسندگان
چکیده
We present a learning-based, sliding window-style approach for the problem of detecting humans in still images. Instead of traditional concatenation-style image location-based feature encoding, a global descriptor more invariant to pose variation is introduced. Specifically, we propose a principled approach to learning and classifying human/non-human image patterns by simultaneously segmenting human shapes and poses, and extracting articulation-insensitive features. The shapes and poses are segmented by an efficient, probabilistic hierarchical part-template matching algorithm, and the features are collected in the context of poses by tracing around the estimated shape boundaries. Histograms of oriented gradients are used as a source of low-level features from which our pose-invariant descriptors are computed, and kernel SVMs are adopted as the test classifiers. We evaluate our detection and segmentation approach on two public pedestrian datasets.
منابع مشابه
بخشبندی معنادار مدل سهبعدی اجسام بر اساس استخراج برجستگیها و هسته جسم
3D model segmentation has an important role in 3D model processing programs such as retrieval, compression and watermarking. In this paper, a new 3D model segmentation algorithm is proposed. Cognitive science research introduces 3D object decomposition as a way of object analysis and detection with human. There are two general types of segments which are obtained from decomposition based on thi...
متن کاملDPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملRadial Line Fourier Descriptor for Segmentation-free Handwritten Word Spotting
Automatic recognition of historical handwritten manuscripts is a daunting task due to paper degradation over time. Recognition-free retrieval or word spotting is popularly used for information retrieval and digitization of the historical handwritten documents. However, the performance of word spotting algorithms depends heavily on feature detection and representation methods. Although there exi...
متن کاملComputer vision based interfaces for computer games
Interacting with a computer game using only a simple web camera has seen a great deal of success in the computer games industry, as demonstrated by the numerous computer vision based games available for the Sony PlayStation 2 and PlayStation 3 game consoles. Computational efficiency is important for these human computer interaction applications, so for simple interactions a fast background subt...
متن کاملLatent-Class Hough Forests for 3D Object Detection and Pose Estimation
In this paper we propose a novel framework, Latent-Class Hough Forests, for 3D object detection and pose estimation in heavily cluttered and occluded scenes. Firstly, we adapt the state-of-the-art template matching feature, LINEMOD [14], into a scale-invariant patch descriptor and integrate it into a regression forest using a novel template-based split function. In training, rather than explici...
متن کامل